3.3.1 \(\int x (d+c^2 d x^2) (a+b \sinh ^{-1}(c x))^2 \, dx\) [201]

Optimal. Leaf size=135 \[ \frac {5}{32} b^2 d x^2+\frac {1}{32} b^2 c^2 d x^4-\frac {3 b d x \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )}{16 c}-\frac {b d x \left (1+c^2 x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{8 c}-\frac {3 d \left (a+b \sinh ^{-1}(c x)\right )^2}{32 c^2}+\frac {d \left (1+c^2 x^2\right )^2 \left (a+b \sinh ^{-1}(c x)\right )^2}{4 c^2} \]

[Out]

5/32*b^2*d*x^2+1/32*b^2*c^2*d*x^4-1/8*b*d*x*(c^2*x^2+1)^(3/2)*(a+b*arcsinh(c*x))/c-3/32*d*(a+b*arcsinh(c*x))^2
/c^2+1/4*d*(c^2*x^2+1)^2*(a+b*arcsinh(c*x))^2/c^2-3/16*b*d*x*(a+b*arcsinh(c*x))*(c^2*x^2+1)^(1/2)/c

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 135, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {5798, 5786, 5785, 5783, 30, 14} \begin {gather*} -\frac {b d x \left (c^2 x^2+1\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{8 c}-\frac {3 b d x \sqrt {c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )}{16 c}+\frac {d \left (c^2 x^2+1\right )^2 \left (a+b \sinh ^{-1}(c x)\right )^2}{4 c^2}-\frac {3 d \left (a+b \sinh ^{-1}(c x)\right )^2}{32 c^2}+\frac {1}{32} b^2 c^2 d x^4+\frac {5}{32} b^2 d x^2 \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x*(d + c^2*d*x^2)*(a + b*ArcSinh[c*x])^2,x]

[Out]

(5*b^2*d*x^2)/32 + (b^2*c^2*d*x^4)/32 - (3*b*d*x*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x]))/(16*c) - (b*d*x*(1 +
c^2*x^2)^(3/2)*(a + b*ArcSinh[c*x]))/(8*c) - (3*d*(a + b*ArcSinh[c*x])^2)/(32*c^2) + (d*(1 + c^2*x^2)^2*(a + b
*ArcSinh[c*x])^2)/(4*c^2)

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 5783

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*S
imp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ
[e, c^2*d] && NeQ[n, -1]

Rule 5785

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[x*Sqrt[d + e*x^2]*(
(a + b*ArcSinh[c*x])^n/2), x] + (Dist[(1/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]], Int[(a + b*ArcSinh[c*x])^
n/Sqrt[1 + c^2*x^2], x], x] - Dist[b*c*(n/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]], Int[x*(a + b*ArcSinh[c*x
])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0]

Rule 5786

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[x*(d + e*x^2)^p*(
(a + b*ArcSinh[c*x])^n/(2*p + 1)), x] + (Dist[2*d*(p/(2*p + 1)), Int[(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^
n, x], x] - Dist[b*c*(n/(2*p + 1))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p], Int[x*(1 + c^2*x^2)^(p - 1/2)*(a + b*A
rcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && GtQ[p, 0]

Rule 5798

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^
(p + 1)*((a + b*ArcSinh[c*x])^n/(2*e*(p + 1))), x] - Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)
^p], Int[(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e
, c^2*d] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int x \left (d+c^2 d x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )^2 \, dx &=\frac {d \left (1+c^2 x^2\right )^2 \left (a+b \sinh ^{-1}(c x)\right )^2}{4 c^2}-\frac {(b d) \int \left (1+c^2 x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right ) \, dx}{2 c}\\ &=-\frac {b d x \left (1+c^2 x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{8 c}+\frac {d \left (1+c^2 x^2\right )^2 \left (a+b \sinh ^{-1}(c x)\right )^2}{4 c^2}+\frac {1}{8} \left (b^2 d\right ) \int x \left (1+c^2 x^2\right ) \, dx-\frac {(3 b d) \int \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \, dx}{8 c}\\ &=-\frac {3 b d x \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )}{16 c}-\frac {b d x \left (1+c^2 x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{8 c}+\frac {d \left (1+c^2 x^2\right )^2 \left (a+b \sinh ^{-1}(c x)\right )^2}{4 c^2}+\frac {1}{8} \left (b^2 d\right ) \int \left (x+c^2 x^3\right ) \, dx+\frac {1}{16} \left (3 b^2 d\right ) \int x \, dx-\frac {(3 b d) \int \frac {a+b \sinh ^{-1}(c x)}{\sqrt {1+c^2 x^2}} \, dx}{16 c}\\ &=\frac {5}{32} b^2 d x^2+\frac {1}{32} b^2 c^2 d x^4-\frac {3 b d x \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )}{16 c}-\frac {b d x \left (1+c^2 x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{8 c}-\frac {3 d \left (a+b \sinh ^{-1}(c x)\right )^2}{32 c^2}+\frac {d \left (1+c^2 x^2\right )^2 \left (a+b \sinh ^{-1}(c x)\right )^2}{4 c^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.13, size = 155, normalized size = 1.15 \begin {gather*} \frac {d \left (c x \left (8 a^2 c x \left (2+c^2 x^2\right )+b^2 c x \left (5+c^2 x^2\right )-2 a b \sqrt {1+c^2 x^2} \left (5+2 c^2 x^2\right )\right )+2 b \left (-b c x \sqrt {1+c^2 x^2} \left (5+2 c^2 x^2\right )+a \left (5+16 c^2 x^2+8 c^4 x^4\right )\right ) \sinh ^{-1}(c x)+b^2 \left (5+16 c^2 x^2+8 c^4 x^4\right ) \sinh ^{-1}(c x)^2\right )}{32 c^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x*(d + c^2*d*x^2)*(a + b*ArcSinh[c*x])^2,x]

[Out]

(d*(c*x*(8*a^2*c*x*(2 + c^2*x^2) + b^2*c*x*(5 + c^2*x^2) - 2*a*b*Sqrt[1 + c^2*x^2]*(5 + 2*c^2*x^2)) + 2*b*(-(b
*c*x*Sqrt[1 + c^2*x^2]*(5 + 2*c^2*x^2)) + a*(5 + 16*c^2*x^2 + 8*c^4*x^4))*ArcSinh[c*x] + b^2*(5 + 16*c^2*x^2 +
 8*c^4*x^4)*ArcSinh[c*x]^2))/(32*c^2)

________________________________________________________________________________________

Maple [F]
time = 180.00, size = 0, normalized size = 0.00 \[\int x \left (c^{2} d \,x^{2}+d \right ) \left (a +b \arcsinh \left (c x \right )\right )^{2}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(c^2*d*x^2+d)*(a+b*arcsinh(c*x))^2,x)

[Out]

int(x*(c^2*d*x^2+d)*(a+b*arcsinh(c*x))^2,x)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 347 vs. \(2 (119) = 238\).
time = 0.33, size = 347, normalized size = 2.57 \begin {gather*} \frac {1}{4} \, b^{2} c^{2} d x^{4} \operatorname {arsinh}\left (c x\right )^{2} + \frac {1}{4} \, a^{2} c^{2} d x^{4} + \frac {1}{2} \, b^{2} d x^{2} \operatorname {arsinh}\left (c x\right )^{2} + \frac {1}{16} \, {\left (8 \, x^{4} \operatorname {arsinh}\left (c x\right ) - {\left (\frac {2 \, \sqrt {c^{2} x^{2} + 1} x^{3}}{c^{2}} - \frac {3 \, \sqrt {c^{2} x^{2} + 1} x}{c^{4}} + \frac {3 \, \operatorname {arsinh}\left (c x\right )}{c^{5}}\right )} c\right )} a b c^{2} d + \frac {1}{32} \, {\left ({\left (\frac {x^{4}}{c^{2}} - \frac {3 \, x^{2}}{c^{4}} + \frac {3 \, \log \left (c x + \sqrt {c^{2} x^{2} + 1}\right )^{2}}{c^{6}}\right )} c^{2} - 2 \, {\left (\frac {2 \, \sqrt {c^{2} x^{2} + 1} x^{3}}{c^{2}} - \frac {3 \, \sqrt {c^{2} x^{2} + 1} x}{c^{4}} + \frac {3 \, \operatorname {arsinh}\left (c x\right )}{c^{5}}\right )} c \operatorname {arsinh}\left (c x\right )\right )} b^{2} c^{2} d + \frac {1}{2} \, a^{2} d x^{2} + \frac {1}{2} \, {\left (2 \, x^{2} \operatorname {arsinh}\left (c x\right ) - c {\left (\frac {\sqrt {c^{2} x^{2} + 1} x}{c^{2}} - \frac {\operatorname {arsinh}\left (c x\right )}{c^{3}}\right )}\right )} a b d + \frac {1}{4} \, {\left (c^{2} {\left (\frac {x^{2}}{c^{2}} - \frac {\log \left (c x + \sqrt {c^{2} x^{2} + 1}\right )^{2}}{c^{4}}\right )} - 2 \, c {\left (\frac {\sqrt {c^{2} x^{2} + 1} x}{c^{2}} - \frac {\operatorname {arsinh}\left (c x\right )}{c^{3}}\right )} \operatorname {arsinh}\left (c x\right )\right )} b^{2} d \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c^2*d*x^2+d)*(a+b*arcsinh(c*x))^2,x, algorithm="maxima")

[Out]

1/4*b^2*c^2*d*x^4*arcsinh(c*x)^2 + 1/4*a^2*c^2*d*x^4 + 1/2*b^2*d*x^2*arcsinh(c*x)^2 + 1/16*(8*x^4*arcsinh(c*x)
 - (2*sqrt(c^2*x^2 + 1)*x^3/c^2 - 3*sqrt(c^2*x^2 + 1)*x/c^4 + 3*arcsinh(c*x)/c^5)*c)*a*b*c^2*d + 1/32*((x^4/c^
2 - 3*x^2/c^4 + 3*log(c*x + sqrt(c^2*x^2 + 1))^2/c^6)*c^2 - 2*(2*sqrt(c^2*x^2 + 1)*x^3/c^2 - 3*sqrt(c^2*x^2 +
1)*x/c^4 + 3*arcsinh(c*x)/c^5)*c*arcsinh(c*x))*b^2*c^2*d + 1/2*a^2*d*x^2 + 1/2*(2*x^2*arcsinh(c*x) - c*(sqrt(c
^2*x^2 + 1)*x/c^2 - arcsinh(c*x)/c^3))*a*b*d + 1/4*(c^2*(x^2/c^2 - log(c*x + sqrt(c^2*x^2 + 1))^2/c^4) - 2*c*(
sqrt(c^2*x^2 + 1)*x/c^2 - arcsinh(c*x)/c^3)*arcsinh(c*x))*b^2*d

________________________________________________________________________________________

Fricas [A]
time = 0.35, size = 204, normalized size = 1.51 \begin {gather*} \frac {{\left (8 \, a^{2} + b^{2}\right )} c^{4} d x^{4} + {\left (16 \, a^{2} + 5 \, b^{2}\right )} c^{2} d x^{2} + {\left (8 \, b^{2} c^{4} d x^{4} + 16 \, b^{2} c^{2} d x^{2} + 5 \, b^{2} d\right )} \log \left (c x + \sqrt {c^{2} x^{2} + 1}\right )^{2} + 2 \, {\left (8 \, a b c^{4} d x^{4} + 16 \, a b c^{2} d x^{2} + 5 \, a b d - {\left (2 \, b^{2} c^{3} d x^{3} + 5 \, b^{2} c d x\right )} \sqrt {c^{2} x^{2} + 1}\right )} \log \left (c x + \sqrt {c^{2} x^{2} + 1}\right ) - 2 \, {\left (2 \, a b c^{3} d x^{3} + 5 \, a b c d x\right )} \sqrt {c^{2} x^{2} + 1}}{32 \, c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c^2*d*x^2+d)*(a+b*arcsinh(c*x))^2,x, algorithm="fricas")

[Out]

1/32*((8*a^2 + b^2)*c^4*d*x^4 + (16*a^2 + 5*b^2)*c^2*d*x^2 + (8*b^2*c^4*d*x^4 + 16*b^2*c^2*d*x^2 + 5*b^2*d)*lo
g(c*x + sqrt(c^2*x^2 + 1))^2 + 2*(8*a*b*c^4*d*x^4 + 16*a*b*c^2*d*x^2 + 5*a*b*d - (2*b^2*c^3*d*x^3 + 5*b^2*c*d*
x)*sqrt(c^2*x^2 + 1))*log(c*x + sqrt(c^2*x^2 + 1)) - 2*(2*a*b*c^3*d*x^3 + 5*a*b*c*d*x)*sqrt(c^2*x^2 + 1))/c^2

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 269 vs. \(2 (129) = 258\).
time = 0.38, size = 269, normalized size = 1.99 \begin {gather*} \begin {cases} \frac {a^{2} c^{2} d x^{4}}{4} + \frac {a^{2} d x^{2}}{2} + \frac {a b c^{2} d x^{4} \operatorname {asinh}{\left (c x \right )}}{2} - \frac {a b c d x^{3} \sqrt {c^{2} x^{2} + 1}}{8} + a b d x^{2} \operatorname {asinh}{\left (c x \right )} - \frac {5 a b d x \sqrt {c^{2} x^{2} + 1}}{16 c} + \frac {5 a b d \operatorname {asinh}{\left (c x \right )}}{16 c^{2}} + \frac {b^{2} c^{2} d x^{4} \operatorname {asinh}^{2}{\left (c x \right )}}{4} + \frac {b^{2} c^{2} d x^{4}}{32} - \frac {b^{2} c d x^{3} \sqrt {c^{2} x^{2} + 1} \operatorname {asinh}{\left (c x \right )}}{8} + \frac {b^{2} d x^{2} \operatorname {asinh}^{2}{\left (c x \right )}}{2} + \frac {5 b^{2} d x^{2}}{32} - \frac {5 b^{2} d x \sqrt {c^{2} x^{2} + 1} \operatorname {asinh}{\left (c x \right )}}{16 c} + \frac {5 b^{2} d \operatorname {asinh}^{2}{\left (c x \right )}}{32 c^{2}} & \text {for}\: c \neq 0 \\\frac {a^{2} d x^{2}}{2} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c**2*d*x**2+d)*(a+b*asinh(c*x))**2,x)

[Out]

Piecewise((a**2*c**2*d*x**4/4 + a**2*d*x**2/2 + a*b*c**2*d*x**4*asinh(c*x)/2 - a*b*c*d*x**3*sqrt(c**2*x**2 + 1
)/8 + a*b*d*x**2*asinh(c*x) - 5*a*b*d*x*sqrt(c**2*x**2 + 1)/(16*c) + 5*a*b*d*asinh(c*x)/(16*c**2) + b**2*c**2*
d*x**4*asinh(c*x)**2/4 + b**2*c**2*d*x**4/32 - b**2*c*d*x**3*sqrt(c**2*x**2 + 1)*asinh(c*x)/8 + b**2*d*x**2*as
inh(c*x)**2/2 + 5*b**2*d*x**2/32 - 5*b**2*d*x*sqrt(c**2*x**2 + 1)*asinh(c*x)/(16*c) + 5*b**2*d*asinh(c*x)**2/(
32*c**2), Ne(c, 0)), (a**2*d*x**2/2, True))

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c^2*d*x^2+d)*(a+b*arcsinh(c*x))^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x\,{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}^2\,\left (d\,c^2\,x^2+d\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + b*asinh(c*x))^2*(d + c^2*d*x^2),x)

[Out]

int(x*(a + b*asinh(c*x))^2*(d + c^2*d*x^2), x)

________________________________________________________________________________________